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Abstract—The study of cyber-insurance, both as a method
for transferring residual cyber-security risks, and as an incen-
tive mechanism for internalizing the externalities of security
investments in interdependent systems, has received considerable
attention in the literature. On one hand, it has been shown
that competitive insurance markets, even though ensuring user
participation, fail to improve the overall network security. On
the other hand, existing literature illustrates how a monopolist
insurer can induce socially optimal behavior (under a binary
decision model). Nevertheless, participation in the latter market
is assumed to be mandatory.

In this paper, we ask the question of whether socially op-
timal security investments in an interdependent system can
be incentivized through non-compulsory insurance. To do so,
we will not consider the competitive market model due to its
inefficiencies, and focus instead on the role of a monopolist profit-
neutral insurer acting as a regulator in implementing the socially
optimal investment profile in an interdependent security game.
We first propose an insurance design mechanism that allows a
continuous decision model. We then study users’ participation
incentives under this mechanism. We show that due to the
non-excludable nature of security as a public good, there may
exist scenarios in which it is impossible to guarantee that users
voluntarily purchase insurance. We discuss the implication of this
impossibility and possible ways to circumvent it.

Index Terms—Security, cyber-insurance, interdependent secu-
rity games, voluntary participation.

I. INTRODUCTION

The use of insurance, or more precisely cyber-insurance as
it is referred to in the realm of computer security, as a means of
mitigating cyber-attack losses and enhancing the reliability of
computer systems has been receiving increasd attention both
in the literature, as well as in practice, as suggested by the
growing market for cyber-insurance contracts.

There are currently over 30 insurance carriers offering
cyber-insurance contracts in the US [1], [2]. Many insurers
have reported growths of 10-25% in premiums in a 2012
survey of the market [2], with some carriers reporting even
higher rates. For example, one carrier reports an increase of
33% from 2011 to 2012 in the number of clients purchasing
their contracts [3]. The total amount of premiums written
are estimated to be between $500M and $1bn [1]. Typical
premiums are estimated to start from $10k -$25k and go as
high as $50M [1], [2]. These contracts are reported to have
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C-B0015.

an average of $16.8M limits [3], with some coverage limits
up to $200M-$300M [1]. We refer the interested reader to
[1], [2], [4] for additional information on both the US and the
UK insurance markets, as well as common types of coverage
offered through these policies, and the typical exclusions.

Aside for the use of cyber-insurance as a risk transfer
mechanism, i.e., as a means of managing residual security
risks, insurance has been considered as a potential solution to
the problem of under-investment in security in interdependent
systems.

A. Sub-optimality of security investments

In general, the effort exerted by a user, entity, or network,
to secure its system not only protects that user from security
breaches, but also improves the security posture of other users
connected to it, by decreasing the likelihood of an indirect
attack originating from the former entity. Accordingly, users’
investments in security in such systems are often viewed as
a public good with positive externalities. Within this context,
a strategic user out of self-interest may not only choose to
ignore the externality of its actions on others, but can further
choose to free-ride on others’ efforts, resulting in an overall
under-investment in security, which then leads to lower overall
levels of security.

The problem of (under-)investment in security by an inter-
connected group of strategic users, both in general as well
as in the context of computer security, has been extensively
studied in the framework of game theory, see e.g. [5]–[10],
and is often formulated as an Interdependent Security (IDS)
game. In the majority of the literature, under-investment in
security is verified by finding the levels of effort exerted in a
Nash equilibrium of the IDS game, and comparing them with
the socially optimal levels of investment.

This under-investment problem motivates the study of
mechanisms for improving network security, and ideally, driv-
ing the system to its socially optimal state (see [10] for a
recent survey). Below we briefly summarize the literature on
cyber-insurance as a potential method for enhancing a system’s
security by incentivizing user cooperation.

B. Cyber-insurance as an incentive mechanism

The study of cyber-insurance both as a method for mit-
igating cyber-security risks and as an incentive mechanism
for internalizing the externalities of security investments has
received considerable attention, see e.g. [5], [10]–[18]. In
addition to the classic insurance problems of adverse selection
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(higher risk users seek more protection) and moral hazard
(users lower their investment in self-protection after being
insured), the design of cyber-insurance contracts is further
complicated by the risk interdependencies and the possibility
of correlated damages in an interconnected system.

The literature on cyber-insurance has mainly focused on one
of the two market environments of competitive or monopolistic
insurers. On one hand, it can be shown that in competitive
insurance markets, the introduction of insurance contracts
not only fails to improve, but can further worsen network
security relative to a no-insurance scenario [13], [16]. This
is because contracts offered in such markets are optimal from
the viewpoint of individual users, whereas socially optimal
contracts should be designed by keeping social welfare in
mind. On the other hand, it is shown that by engaging in
premium discrimination, a monopolistic profit-neutral cyber-
insurer can induce socially optimal security investments in
an interdependent system where security decisions are binary
[14]–[16].1

Despite the shortcomings of competitive markets in imple-
menting socially optimal solutions, a competitive approach
to insurance contract design provides the benefit that the
participation of users in the market will be guaranteed, as
their self-interest is satisfied. In contrast, although [14]–[16]
implement the socially optimal solution in the binary deci-
sion framework, participation is assumed to be mandatory,
e.g., users are enforced through policy mandates to purchase
insurance.

In the remainder of this paper, we ask the question of
whether socially optimal security efforts can be incentivized
through non-compulsory insurance? That is, we take on the
latter viewpoint on insurance markets, focusing on implement-
ing the socially optimal investment profile in an IDS game
by considering a monopolist profit-neutral insurer, i.e., an
insurance regulator, and study users’ participation incentives
in these markets.

C. Main contributions

In this paper, we take a mechanism design approach to the
security investment problem, and present a message exchange
process through which users converge to an equilibrium where
they make the socially optimal levels of investment in security.
The proposed method, which is adapted from the externality
mechanism proposed by Hurwicz in [19], is applicable to a
general model of interdependence, and captures heterogeneity
in users’ preferences, costs, and their importance to the system.
In particular, this model allows for continuous levels of effort.
Therefore, our work complements the existing results in [14]–
[16], by proposing a mechanism that achieves similar benefits
in a non-binary setting.

More importantly, our other goal in this paper is to elu-
cidate the nature of participation incentives in the insurance

1We note that the term “monopolistic” generally implies the use of exclusive
market power for profit maximization, while in our model this monopolistic
insurer is profit-neutral, essentially acting as a regulator through insurance
means [18]. This use of the term however is consistent with literature in this
area, see e.g., [14]–[16]. For this reason we will henceforth use the terms
“insurance regulator” and “monopolistic insurer” interchangeably.

market with security interdependencies. We show that with a
general model of interdependencies and as a result of the non-
excludable nature of security as a public good, the insurance
regulator may not be able to guarantee that users voluntarily
purchase protection form the market. These constraints have
not been specifically addressed in the literature on monopolis-
tic cyber-insurance [14]–[16]. Therefore, to the best of our
knowledge, this is the first work to study users’ voluntary
participation in cyber-insurance markets.

D. Paper organization

The rest of this paper is organized as follows. We present
our model and main assumptions in Section II, and introduce
our proposed insurance mechanism in Section III. Further
illustration using two numerical simulations in provided in
Section IV. We discuss users’ participation incentives in Sec-
tion V, followed by further interpretation of our observations
and possible remedies in Section VI. Section VII concludes
the paper.

II. MODEL AND PRELIMINARIES

Consider a collection of N users, referred to as the system.
Each user i can choose a non-negative level of investment on
security measures or protection, denoted by xi, and incur a
cost of hi(xi). We assume hi : R → R+ is differentiable,
strictly increasing, and strictly convex, for all i. Intuitively,
this means that security measures get increasingly costly as
their effectiveness increases.

Let x := (x1, x2, . . . , xN ) denote the profile of users’
security investments. We denote user i’s security risk function
by fi(x). The security risk function models the probability that
a successful security attack on a particular user occurs, and
may vary among different users depending on their security
interdependencies.

Let Li denote user i’s losses in case a security breach
occurs. Note that users may be able to decrease their poten-
tial losses by investing in self-insurance measures (e.g. data
backup) [7], [20]. If such options are available to users, Li will
denote the residual losses of user i, i.e., losses that can not be
mitigated through self-insurance alone. The expected losses of
an individual in the system is therefore given by Lifi(x).

We assume fi : RN → R+ is differentiable, strictly decreas-
ing in all xj , and strictly convex in all xj , for all i, j. This
assumption states that the security risk decreases as the invest-
ment in security increases. In particular, ∂fi/∂xj < 0, j 6= i
models the positive externality of security investments. The
assumption of convexity means that while initial investment
in security offers considerable protection, the rate of risk
reduction slows down at higher investment levels, as there is no
security measure that could fully prevent malicious activities
[9], [10].

The utility function of user i is thus given by:

ui(x) = −Lifi(x)− hi(xi) . (1)

The strategic game ({1, 2, . . . , N}, {xi ≥ 0}, {ui(·)}) among
the N utility-maximizing users will be referred to as the
Interdependent Security (IDS) game.



www.manaraa.com

3

The Nash equilibria (NE) of IDS games have been exten-
sively studied in the literature. These studies often point out to
the inefficiency of these NE as compared to the socially opti-
mal (SO) levels of investment in security. The socially optimal
profile of security investments x∗ is the profile of investments
that maximizes the social welfare, and is determined by the
solution to the following centralized optimization problem:

max
x�0

N∑
i=1

ui(x) . (2)

Given the model assumptions, our IDS game has a unique
socially optimal solution. Our goal in Section III is to design
insurance contracts, the purchase of which will induce this
socially optimal investments by the users without directly
solving the above centralized problem.

To do so, we will focus on an insurance regulator who
offers insurance contracts (ρi, Ii) where the two elements are
interpreted as follows: ρi is the premium paid by user i, and
Ii the indemnification payment or coverage provided to user i
if an incident occurs. The utility of a user i when purchasing
insurance is thus given by:

ui(x, ρi, Ii) = −(Li − Ii)fi(x)− hi(xi)− ρi . (3)

We note that the insurer may offer partial coverage (Ii < Li),
full coverage (Ii = Li), or additional compensation (Ii > Li)
in case of a loss. In the latter case, a negative Li− Ii implies
an additional reward to user i.

We should emphasize that the assumption of a monopolist
insurer is key in our setting. Our focus is on implementing the
socially optimal investment profile in an IDS game; we thus do
not consider a competitive market model due to its inefficien-
cies and instead investigate the role of a monopolist insurer. It
should be noted that a contract may include additional terms
such as deductible, premium discount for being incident-free,
separate coverage for catastrophic events, etc. However, we
shall show that an insurer can implement the socially optimal
solution using the most simple contracts consisting only of
a premium and a coverage level. The potential benefits of
introducing additional dimensions is discussed in Section VI.

The expected profit of the insurer offering a set of contracts
{(ρi, Ii)}Ni=1 is be given by:

P =
∑
i

ρi −
∑
i

Iifi(x) . (4)

We will further assume that the insurer is profit neutral. This
assumption is common in the mechanism design literature,
often referred to as the budget balance condition in mech-
anisms that use monetary taxation.2 In our context the role
of the monopolist insurer may very well be played by a
government agency, in which case profit-neutrality becomes
a natural assumption. Consequently, we are interested in
insurance contracts satisfying

∑
i ρi =

∑
i Iifi(x). Given this,

the socially optimal solution to (2) is the same whether we

2In fact, it is easy to see that a profit making monopolist insurer can only
make the voluntary participation constraints even harder to satisfy, as this
profit could have been used to incentivize user cooperation. As we aim to
understand participation incentive in this study, we will adopt this assumption.

consider (1) or (3) as users’ utility functions.

III. INSURANCE CONTRACT DESIGN

In this section, we present a mechanism that can achieve the
socially optimal solution to (2). A decentralized mechanism is
specified by a game form (M, g).
• The message space M := ΠN

i=1Mi specifies the set of
permissible messages Mi for each user i.

• The outcome function g : M → A determines the
outcome of the game based on the users’ messages. Here,
A is the space of all security investment, premium, and
coverage profiles, i.e., (x,ρ, I).

The game form, together with the utility functions (3), define
a game, given by (M, g(·), {ui(·)}). We will henceforth refer
to this as the regulated IDS game or the IDS game induced
by the mechanism. We say the message profile m∗ is a Nash
equilibrium of this game, if

ui(g(m∗i ,m
∗
−i)) ≥ ui(g(mi,m

∗
−i)), ∀mi, ∀i . (5)

The components of our mechanism are as follows.
Each user i provides a message mi := (xi,πi) to the

insurer. xi ∈ RN denotes user i’s proposal on the public
good, i.e., it proposes the amount of security investment to be
made by everyone in the system, referred to as an investment
profile. πi ∈ RN+ denotes a pricing profile which suggests
the equivalent amount to be paid by everyone. As illustrated
below, this is used by the insurer to determine the insurance
contracts of all users. Therefore, the pricing profile is user i’s
proposal on the private good.

The outcome function g(·) takes the message profiles m :=
{m1,m2, . . . ,mN} as input, and determines the security in-
vestment profile x̂ and an intermediate net payment profile t̂
as follows:

x̂(m) =
1

N

N∑
i=1

xi , (6)

t̂i(m) = (πi+1 − πi+2)T x̂(m)

+ (xi − xi+1)T diag(πi)(xi − xi+1)

− (xi+1 − xi+2)T diag(πi+1)(xi+1 − xi+2),∀i. (7)

In (7), for simplicity N + 1 and N + 2 are treated as 1 and 2,
respectively. Once the net payment profile t̂ is calculated, the
insurer determines the optimal contracts {(ρ̂i, Îi)}Ni=1 based
on the following equations:

ρ̂i − Îifi(x̂) = t̂i , ∀i . (8)

The choice of the term “net payment” should now be clear
from (8). Notice also that by (7), we have

∑
i t̂i = 0. Together

with (4), this implies that the profit-neutral condition of the
insurer is automatically satisfied through this construction.
What this means is that the insurer will not be spending
resources or making profit, as the users whose net payment
t̂i is positive will be financing the insurance coverage for
those who have negative net payments. The above equations
may have many solutions, each of which results in an optimal
contract. The choice lies with the insurer, e.g., it may offer full
coverage in return for a high premium, or a lower-premium
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contract with partial coverage. Note that users are not able to
change either their premium or their coverage level directly,
but can potentially alter their net payment t̂i through their
message.

It is worthwhile to highlight an alternative interpretation
for the intermediate net payment profile t̂. Even though the
profile t̂ has been used as a stepping stone in finding the
optimal insurance contracts in our proposed mechanism, one
could simply view this profile as a monetary taxation/reward
to incentivize optimal user behavior. Our previous work on
the proposed mechanism in the context of IDS games [21],
as well as similar decentralized mechanisms proposed in [19],
[22], are based on this interpretation.

A. An intuitive explanation

Intuitively, the above mechanism operates as follows. The
investment profile x̂ gives the levels of investment suggested
by the insurer for each player. This vector is derived by
taking the average of all users’ proposals for the public good.
To ensure that these proposals are consistent, and eventually
match the socially optimal levels of investment, the insurer
designs the insurance contracts according to (7) and (8). To
highlight this feature, we consider the three terms in (7)
separately.

First, we note that a user i can only affect the first term
(πi+1 − πi+2)T x̂(m) in its net payment by altering its
proposal on the investment profile. We will illustrate the role
of this term shortly. The second term in (7) is included to
punish discrepancies among users’ proposals on the investment
profile by increasing their net payment in case of disagree-
ment. Lastly, the third term, which is independent of user i’s
message, is included to satisfy the profit-neutral constraint of
the insurer. As discussed in the proof of Theorem 1, the last
two terms will be zero at an equilibrium of the regulated IDS
game. Nevertheless, the inclusion of these terms is required to
ensure convergence to the socially optimal solution, and also
for balancing the insurer’s budget.

We now highlight the role of the first term in (7), and its
close relation to the positive externality effects of users’ ac-
tions. As shown in the proof of Theorem 1, at the equilibrium
m∗ of the regulated IDS game, the net payment of a user i
reduces to t̂i = l∗i

T x̂(m∗), where l∗i := π∗i+1 − π∗i+2. If net
payments are determined according to these prices, the socially
optimal investments x̂(m∗) will be individually optimal as
well, i.e.,3

x̂(m∗) = arg min
x�0

Lifi(x) + hi(xi) + l∗i
Tx . (9)

As a result, for all i, and all j for which x̂j 6= 0, the Karush-
Kuhn-Tucker (KKT) conditions on (9) yield:

l∗ij = −Li
∂fi
∂xj

(x̂(m∗)) . (10)

The interpretation is that by implementing this mechanism,
each user i will be financing part of user j 6= i’s insurance

3See proof of Theorem 1 presented later in this section for the derivation
of this result.

contract. According to (10), this amount is proportional to the
positive externality of j’s investment on user i’s utility.

B. Analysis of the insurance mechanism

We close this section by establishing the optimality of
our proposed mechanism. Note that to prove this optimality,
we first need to show that a profile (x̂(m∗), ρ̂(m∗), Î(m∗)),
derived at the NE m∗ of the regulated IDS game, is the socially
optimal solution to the centralized problem (2). Furthermore,
as the procedure for convergence to NE is not specified, we
need to verify that the optimality property holds for all Nash
equilibrium of the message exchange process. This guarantees
that the outcome will converge to the socially optimal solution
regardless of the realized NE. These two requirements are
established in Theorem 1 below.

Theorem 1: Let (x̂(m∗), ρ̂(m∗), Î(m∗)) be the in-
vestment, premium, and coverage profiles obtained at
the Nash equilibrium m∗ of the regulated IDS game
(M, g(·), {ui(·)}). Then, x̂ is the optimal solution to the
centralized problem (2). Furthermore, if m̄ is any other Nash
equilibrium of the proposed game, then x̂(m̄) = x̂(m∗).

Proof: Let m∗ be a Nash equilibrium of the message
exchange process, resulting in an allocation (x̂, ρ̂, Î). Assume
user i updates its message from m∗i = (π∗i ,x

∗
i ) to mi =

(πi,x
∗
i ), that is, it only updates the pricing vector proposal.

Therefore, according to (6), x̂ will remain fixed, while based
on (7), the second term in t̂i will change. The change of this
term can in turn affect the choice of either ρ̂i, Îi, or both. First
note that a user i’s utility (3) can be re-written as follows:

ui(x, ρi, Ii) = −Lifi(x)− hi(xi)− (ρi − Iifi(x))

= −Lifi(x)− hi(xi)− ti . (11)

Using (11) and the fact that if m∗ is an NE, unilateral
deviations are not profitable, we have:

(x∗i − x∗i+1)T diag(π∗i )(x
∗
i − x∗i+1)

≤ (x∗i − x∗i+1)T diag(πi)(x
∗
i − x∗i+1), ∀πi � 0. (12)

Hence, from (12) we conclude that for all i:

x∗i = x∗i+1 or π∗i = 0 . (13)

Using (13) together with (7) we conclude that at equilibrium,
the second and third terms of a user’s net payment vanish.
Denoting l∗i := π∗i+1 − π∗i+2, we get:

t̂i(m
∗) = l∗i

T x̂(m∗) . (14)

Now consider users’ utility functions at the NE m∗. Since
unilateral deviations are not profitable, a user’s utility (11)
should be maximized at the NE, i.e., for any choice of xi and
πi � 0:

Lifi(x̂(m∗)) + hi(x̂i(m
∗)) + l∗i

T x̂(m∗)

≤ Lifi(
xi +

∑
j 6=i x

∗
j

N
)

+ hi(
xii +

∑
j 6=i x

∗
ji

N
) + l∗i

T xi +
∑
j 6=i x

∗
j

N
+ (xi − x∗i+1)T diag(πi)(xi − x∗i+1) . (15)
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If we choose πi = 0 and let xi = N · x−
∑
j 6=i x

∗
j , where x

is any vector of security investments, we get:

Lifi(x̂(m∗)) + hi(x̂i(m
∗)) + l∗i

T x̂(m∗)

≤ Lifi(x) + hi(xi) + l∗i
Tx, ∀x . (16)

To show that the Nash equilibrium m∗ results in a socially
optimal allocation, we sum up (16) over all i, and use the fact
that

∑
i l
∗
i = 0 to get:

N∑
i=1

ui(x̂(m∗)) ≥
N∑
i=1

ui(x), ∀x . (17)

Therefore, x̂(m∗) is the optimal solution to problem (2).
Furthermore, any insurance contract determined using (8) and
the intermediate net payment profile t̂(m∗) can be chosen as
the insurance contract in the optimal solution. Finally, since
our choice of the NE m∗ has been arbitrary, the same proof
holds for any other NE, and thus all NE of the mechanism
result in the optimal solution to problem (2). �

We next establish the converse of the above theorem in
Theorem 2, i.e., given an optimal investment profile, there
exists an NE of the proposed game which implements this
solution; the proof is given in the appendix.

Theorem 2: Let x∗ be the optimal investment profile in the
solution to the centralized problem (2). Then, there exists at
least one Nash equilibrium m∗ of the regulated IDS game
(M, g(·), {ui(·)}) such that x̂(m∗) = x∗.

IV. NUMERICAL EXAMPLES

In this section we present two numerical examples to
illustrate how the proposed insurance contracts affect users’
actions, security risks, costs, and ultimately, the security and
societal costs of the interconnected system. In particular, this is
done under two different risk models. Throughout this section,
for consistency and ease of presentation, we assume users’
costs are linear in their investment, i.e., hi(xi) = cixi, where
ci > 0 is the unit cost of investment. Users will be indexed
according to their costs, such that c1 < c2 < . . . < cN .

A. Example 1: a weighted total effort model

We first assume users’ risk functions are given by a weighted
total effort model [6], [10],

fi(x) = exp(−
N∑
j=1

aijxj), (18)

where aij determines the degree of externality of user j’s
investment on user i’s security risks. Let A := [aij ] denote
the interdependence matrix containing these weights. Under
these assumptions, a user i’s utility function is given by:

ui(x, Ii, ρi) = −(Li − Ii) exp(−
N∑
j=1

aijxj)− cixi − ρi .

The simulations are based on an instance of this problem
with the following parameters. Consider a collection of N =
10 users. Assume that the unit costs of investment for the firms
are generated randomly, such that c1 < c2 < . . . < cN . We let

Li = L = $50M, ∀i, that is, we assume all firms are subject
to a similar maximum loss of $50M in case of a security
breach. Finally, we generate the interdependence matrix A at
random, with the only constraint that aii > aij , ∀i, j 6= i.
This implies that a user’s security is primarily affected by its
own expenditure in security measures.

Figure 1 illustrates the expected losses Lifi(x) of user i
under both the Nash equilibrium and the socially optimal
outcome. In this example, we see that implementing the
proposed insurance contracts not only leads to risk transfer,
but it also incentivizes risk reduction.4 Figure 2 shows the
change in users’ expenditure in security after the contracts
are purchased. It can be seen that as expected, the socially
optimal solution requires users with lower cost in security
improvement to make higher investments.

As the insurer is profit-neutral, this higher effort by the main
investors is compensated by other users’ premium payments.
Indeed, as illustrated in Figure 3, the net payment of the
main investors 1 and 2 are negative, to be covered by the
positive net payment of the remaining users. In essence, the
social optimality derives from the fact that users that are more
effective and efficient in their security spending are being paid
by less efficient users to do so on their behalf. The insurer in
this context serves as a coordinator or facilitator.

Interestingly, the net payment of several users are negligible.
This is consistent with our observations in Figures 1 and 2,
where the expected loss and expenditures of these users are
also negligible at the socially optimal outcome. As a result, the
insurance contracts for these users are the degenerate contracts
with zero premium and coverage. Similarly, based on Figure
1, the probability of large losses are negligible for users 1
and 2. In this case, offering an indemnification payment to
these users is unnecessary. The insurer can in turn allocate
the premium surplus from other users to the main investors
as additional funds to be spent in security. Finally, the insurer
can offer full coverage to users 5 and 7 (i.e. Ii = L = $50M ),
in return for premiums of $4.7M and $7M, respectively.
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Fig. 1. Expected Losses - Weighted Total Effort

Overall, the introduction of the proposed insurance contracts
reduces the costs of all users in security, as illustrated in
Figure 4, where costs are given by −ui for user i. This

4It is worth mentioning that this is not necessarily the case when a system
moves from the Nash equilibrium to the socially optimal solution. A socially
optimal solution is meant to minimize social costs, and therefore it may result
in higher risks/losses for some users.
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1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10
Net User Payments (i.e. Premium − Insurance Coverage)

User Index

N
e
t 
P

a
y
m

e
n
t 
in

 M
ill

io
n
 D

o
lla

rs

Fig. 3. Net Payments - Weighted Total Effort

figure illustrates a component-wise improvement in users’
costs as a result of implementing the proposed mechanism.
This means that the profit-neutral insurer does not necessarily
need to make some users worse off in order to improve social
welfare. Figure 5 illustrates the improvement in social welfare
following the implementation of insurance. Numerically, as a
result of risk reduction following the purchase of insurance
contracts, we see savings of close to $40M in social costs.
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Fig. 4. Expected Costs - Weighted Total Effort

B. Example 2: a weakest link model

We now assume users’ risk functions are determined by the
weakest link model fi(x) = exp(−minj xj) [6], [10]. Intu-
itively, this model states that an attacker can compromise the
security of an interconnected system by taking over the least
protected machine. To use this model in our proposed frame-
work, we need a continuous, differentiable approximation of
the minimum function. Let minj xj ≈ − 1

γ log
∑
j exp(−γxj),
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Fig. 5. Social Costs - Weighted Total Effort

where the accuracy of the approximation is increasing in the
constant γ > 0. User i’s utility function is thus given by:

ui(x, Ii, ρi) = −(Li − Ii)(
N∑
j=1

exp(−γxj))1/γ − cixi − ρi .

The simulations are based on an instance of this problem
with the following parameters. We again consider N = 10
users, with unit costs of investment generated randomly, such
that c1 < c2 < . . . < cN . Also, Li = L = $50M, ∀i. We note
that the weakest link game has multiple Nash equilibrium, in
which all users invest in the same (sub-optimal) amount in
security. We pick the NE with investment levels at the mean
of all these possible NE.

Figure 6 illustrates the expected losses Lifi(x) of users
i. Again, we see that implementing the proposed insurance
contracts has incentivized risk reduction. Figure 7 shows the
change in users’ expenditure in security after the contracts
are purchased. Note that at an equilibrium of the weakest-link
game, all users exert an identical level of effort [6]. Therefore,
to arrive at this same optimal level of investment, users with
higher costs are required to spend more in security measures.
As a result, one expects the users with lower costs to aid this
transition. Indeed, as illustrated in Figure 8, the net payment of
the higher cost users are negative, to be covered by the positive
net payment of the lower cost users. Users’ insurance contracts
can now be determined according to their net payments. For
example, user 3 will be receiving full coverage I3 = $50M in
return for a $2M premium, while user 7 receives full coverage
I7 = $50M , but pays a zero premium.

We again observe a component-wise reduction in users’
costs, as illustrated in Figure 9, along with improvement in
social welfare leading to savings of close to $35M in social
costs, Figure 10.

V. ON VOLUNTARY PARTICIPATION

The message exchange process proposed in Section III, as
well as the mechanisms proposed in [14]–[16], take users’
participation in the insurance market for granted. While this
could be ensured through certain external incentive mecha-
nisms, e.g., a government agency could make participation in
cyber-insurance a prerequisite to receiving funding or business
opportunities, it is generally more desirable to make this incen-
tive to participate a built-in property of the mechanism itself. If
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Fig. 6. Expected Losses - Weakest Link

Expenditure in Security in NE vs SO
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Fig. 7. Security Expenditure - Weakest Link

this can be accomplished then the mechanism not only induces
socially optimal resource allocation, but offers incentive for
each individual user to participate in the mechanism. Within
this context there are two desirable conditions/constraints
that we would like a mechanism to satisfy. The first is
the commonly studied individual rationality (IR) condition
which states that users should prefer the existence of the
mechanism to the previous state of anarchy. The second is the
less frequently invoked voluntary participation (VP) condition
referred to by [23], which states that a user should prefer
participation in the mechanism to staying out, given everyone
else in the environment participates.

Satisfying individual rationality in the current context, al-
though desirable, does not guarantee the implementation of the
insurance contracts, as voluntary participation of users in the
insurance market needs to be ensured as well. In this section,
we further illustrate the difference of the two constraints in the
current setting, and study the voluntary participation constraint
of the users under the insurance mechanism.

A. The non-excludable public good

Strategic users’ decisions regarding participation in a given
mechanism is influenced not only by the structure of the
induced game form, but also by the actions available to them
when opting out. A common assumption in the majority of
public good and resource allocation problems, including those
on decentralized mechanisms similar to the one presented in
Section III ( [19], [22]), is that users get a zero share (of the
public good or allotted resources) when opting out. Following
this assumption, the individual rationality and voluntary par-
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Overall User Costs in NE vs SO
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Fig. 9. Expected Costs - Weakest Link

ticipation constraints of such mechanisms are equivalent, and
are rather trivially satisfied.

However, a similar line of reasoning is not applicable to
our problem. This is because at issue is the provision of a
non-excludable public good: in an inter-connected system, an
individual benefits from improved security of its neighbors
(the positive externality) regardless of its own decision on
whether to adopt a certain measure. Specifically in the context
of an IDS game, even when opting out, a user can still
enjoy the positive externalities of other users’ investments
(although these may be lower as the mechanism has now
only partial coverage), choose its optimal action accordingly,
and possibly avoid spending resources on insurance. Thus to
ensure voluntary participation in this regulated IDS game is
not as trivial as in previous studies.

Indeed, we next present a counter-example which shows
that there may exist users to whom the benefits of staying
out exceeds that of participation. Thus such a user is better
off acting as a “loner”, who refuses to participate in the
mechanism, and later best-responds to the socially optimal
strategy of the remaining N − 1 users who did participate. It
would be natural to expect these N−1 users to also revise their
strategy (investments) in response to this loner’s best response,
resulting in a game between the loner and the remaining N−1
users. In this example we will compare the loner’s utility in the
socially optimal solution when participating in the mechanism,
versus the utility it gains as the outcome of the game described
above.



www.manaraa.com

8

0

10

20

30

40

50

60

70
Social Costs in NE vs SO

C
o
s
ts

 i
n
 M

ill
io

n
 D

o
lla

rs

 

 

Nash Equilibrium
Socially Optimal

Fig. 10. Social Costs - Weakest Link

B. A negative example

Consider a collection of N users. The cost function of each
user i is given by a linear function hi(xi) = cixi, where
ci > 0 is the unit cost of investment. Choose c1 < c2 < . . . <
cN . Assume the risk function of user i is given by fi(x) =
exp(−

∑N
j=1 xj) (an instance of the total effort model [6]).

Finally, for simplicity, let Li = 1, ∀i. The utility function of
a user i purchasing the insurance contract (ρi, Ii) is therefore
given by:

ui(x, ρi, Ii) = −(1− Ii) exp(−
N∑
j=1

xj)− cixi − ρi . (19)

It is easy to show [6], [21] that with a total effort model,
the user with the smallest cost will exert all the effort, while
all other users will free-ride on the positive externality of this
investment. Therefore, we can find the equilibrium of the game
under different conditions as follows.

Socially optimal outcome: When all N users participate
in the mechanism, it is clear that under the optimal solution
to problem (2) user 1 will exert all the effort. The first order
optimality condition suggests that this optimal investment is
given by the solution to the equation:

N exp(−x∗1)− c1 = 0 =⇒ exp(−x∗1) =
c1
N

.

Intuitively, user 1’s investment in this case corresponds to the
amount it would make if it were the only user in the system
with a unit cost c1

N . This will thus be referred to as user 1’s
equivalent cost in this N -player total effort game. Therefore,
the socially optimal profile of investments x∗ is such that:

exp(−x∗1) =
c1
N
, x∗j = 0, ∀j > 1 .

User 1’s VP condition: If user 1 chooses to stay out,
user 2 will be the player with the lowest cost in the N − 1
player game, investing according to the equivalent cost of
c2
N−1 . Whether user 1 will invest in security or free-ride on
the externalities depends on user 2’s level of investment. When
c1 >

c2
N−1 , user 1 will have a higher cost, and thus will prefer

to free-ride on user 2’s investment. The equilibrium levels of
investment x̂ of this game will thus be:

exp(−x̂2) =
c2

N − 1
, x̂j = 0, ∀j 6= 2 .

User k’s VP condition, for k ≥ 2: Finally, if any user other
than 1 decides to stay out, user 1 will continue exerting all the
effort, but the level of security will be determined according
to the higher equivalent cost of c1

N−1 . The equilibrium levels
of security x̃ will decrease such that:

exp(−x̃1) =
c1

N − 1
, x̃j = 0, ∀j > 1 .

We can now use the above analysis to determine the volun-
tary participation conditions of all users. For user 1 to volun-
tarily participate in the mechanism, we need u1(x∗, ρ∗1, I

∗
1 ) ≥

u1(x̂). This in turn leads to:

− exp(−x∗1)− c1x∗1 − ρ∗1 + I∗1 exp(−x∗1) ≥ − exp(−x̂2) .

Rearranging, we see that user 1’s insurance contract should
satisfy:

−ρ∗1 + I∗1
c1
N
≥ c1(

1

N
− ln

c1
N

)− c2
N − 1

. (20)

For any other user k ≥ 2, the voluntary participation condition
is:

− exp(−x∗1)− ρ∗k + I∗k exp(−x∗1) ≥ − exp(−x̃1) .

Rearranging, we conclude that user k’s insurance contracts,
which in fact requires these users to finance the insurance
contract for user 1, should be worth the extra security:

ρ∗k − I∗k
c1
N
≤ c1
N(N − 1)

. (21)

To satisfy the insurer’s profit-neutral constraint, we
need

∑
j ρ
∗
j = c1

N

∑
j I
∗
j , which can be written as

−ρ∗1 + I∗1
c1
N =

∑N
j=2 ρ

∗
j − I∗j

c1
N . Using this, together

with (21), we conclude:

−ρ∗1 + I∗1
c1
N
≤ c1
N

. (22)

For (20) and (22) to be consistent, we need to satisfy the
following condition:

c1(
1

N
− ln

c1
N

)− c2
N − 1

≤ c1
N

.

Choose any c1 < c2 < 1 and c1 > c2
N−1 . If N ≥ 3, then

c1 ln( c1N )+ c2
N−1 < 0, which means that the VP conditions for

user 1 and users k ≥ 2 cannot be simultaneously satisfied.

VI. DISCUSSION

We have thus found an example where not all users will
voluntarily participate in the insurance mechanism. Note that
the existence of the counter example in Section V-B does
not depend on how the insurance contracts are designed; it
is simply a consequence of not being able to simultaneously
satisfy individuals’ self-interest, social optimality, and the
insurer’s profit-neutrality.5

5Our approach in deriving this result is similar to that in [23, Section 2],
in which the authors present a counter-example to show the impossibility
of achieving voluntary participation in Lindahl mechanisms for provision
of a public good with a constant return to scale technology. The authors
then establish a more rigorous proof of the impossibility, by showing the
inconsistency in the set of problem constraints [23, Section 4]. It would be
interesting to establish the impossibility result in the current IDS problem
using a similar approach.
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Intuitively, this impossibility arises from the fact that to
achieve socially optimal investments, one (or more) of the
users is required to increase its investment level, thus de-
manding compensation in the form of insurance coverage.
Nevertheless, the added security is not enough to incentivize
the remaining users to finance this coverage, especially as they
are able to free-ride on a slightly lower security level if they
opt out. Conversely, the main investor may prefer to opt out of
the mechanism if the compensation offered to them is not high
enough. In this case, this user may choose to free-ride on the
externality of the (lower) security by the next main investor.

A. A numerical example

The following numerical example highlights both of these
possible complications under our proposed mechanism. Again
assume users’ risk functions are given by the weighted total
effort model, fi(x) = exp(−

∑N
j=1 aijxj). Let A := [aij ]

denote the a randomly generated interdependence matrix con-
taining the weights aij .

The simulations are based on an instance of this problem
with the following parameters. Consider a collection of N = 5
users. Assume that the unit costs of investment for the users
are generated randomly, such that c1 < c2 < . . . < cN . We
let Li = L, ∀i, that is, we assume all users are subject to a
similar maximum loss in case of a security breach.

Figure 11 illustrates the investments of users in security
measures with and without insurance contracts. It is easy to see
that users 2, 3, and 5 are the main investors in the mechanism,
while users 1 and 4 are the free-riders. Users’ costs when
purchasing insurance and acting as loners is illustrated in
figure 12. Notice that in this problem instance, user 2 is
motivated to contribute as a main investor, while users 3 and
5 are not compensated enough to do so. Similarly, free-rider
4 is willing to pay a high premium in return for the added
protection, while free-rider 1 would rather stay out and benefit
from the positive externalities from the improved security of
the remaining 4 users.

B. A positive example

We next identify a family of problem instances in which the
insurance mechanism of Section III does satisfy the voluntary
participation constraints of users.

Consider the same interdependency model detailed in the
counter-example in Section V-B. As mentioned, since users
with utility functions given by (19) are subject to similar
losses, only the user with the smallest cost will invest in
security, while the remaining users free-ride. We want to
ensure that all users, i.e. both the main security investor and
the free-riders, prefer participating in the proposed mechanism
to unilaterally staying out.

First note that the net payments of users in our proposed
mechanism can be determined according to (10), and are given
by:

t∗i = −
∑
j

x∗j
∂fi
∂xj

(x∗)− cix∗i .
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Fig. 11. Users investments in security with or without insurance
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Substituting fi(x) = − exp(−
∑
j xj), the utility of users

when all N participate in the mechanism will reduce to:

ui(x
∗, ρ∗i , I

∗
i ) = − c1

N
(1 + x∗1) .

Users’ VP constraints: Using the analysis from the previ-
ous section, for a user j ≥ 2 to voluntarily participate in the
mechanism, we need uj(x∗, ρ∗j , I

∗
j ) > uj(x̂), which yields:

c1
N

(1 + x∗1) <
c1

N − 1
⇒ ln

N

c1
<

1

N − 1
(VPj) .

On the other hand, when user 1 steps out, one of the
following outcomes is realized:

a. If c1 < c2
N−1 , user 1 will continue investing in security,

with an investment given by exp(−x̄1) = c1. User 1’s VP
constraint in this case is:
c1
N

(1 + x∗1) < c1(1 + x̄1)⇒ ln c1 < 1− lnN

N − 1
(VP1a).

b. If c2
N−1 < c1 < c2, user 2 will invest in security,

while all other users, including user 1, free-ride. The level
of security provided is given by exp(−x̂2) = c2

N−1 , leading to
the following VP condition for user 1:

c1
N

(1 + x∗1) <
c2

N − 1
(VP1b) .

Ensuring voluntary participation: For voluntary partici-
pation to hold in a problem instance, we need to have (VPj),
and either (VP1a) or (VP1b) satisfied.

(VPj) and (VP1a) hold simultaneously if and only if:

N = 2,
2

e
< c1 <

e

2
, c2 > c1 .
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(VPj) and (VP1b) hold if and only if N, c1, c2 satisfy:

c1 > N exp(− 1

N − 1
), c1 < c2 < (N − 1)c1 .

C. Potential solutions

As shown in the previous positive example, we may identify
classes of problems in which the mechanism in Section III
satisfies users’ voluntary participation constraints. In general,
it may be possible to alleviate the participation issues by
injecting external resources into the system (i.e. relaxing
the insurer’s budget balance condition), implementing a sub-
optimal equilibrium (i.e. relaxing the social optimality condi-
tion), restricting the space of utility functions (i.e. designing
separate contracts for different classes of risk functions), or
settling for a mechanism with partial coverage. These remain
interesting directions of future research.

If the above alternatives are not desirable, and voluntary
participation cannot be guaranteed, one may also resort to
policy mandate to induce users to purchase insurance in
order to achieve social optimality. It should be noted that
policy mandate is different from existing mechanisms that
dictate users’ investments [10], in that even under mandate,
constant enforcement of users’ actions is not needed, as it
is individually optimal for users to exert the socially optimal
effort once contracts are purchased.

An alternative to policy mandate is in the form of other
financial incentives, including those already mentioned such as
business opportunities or tax credits. It is also conceivable for
the monopolist insurer (especially if played by a government
agency) to guarantee the VP condition by offering separate
coverage for rare but catastrophic security losses. As this type
of coverage (acting in much the same way as relief for loss due
to war or natural disasters) would be otherwise unavailable, it
provides additional incentive for a user who might otherwise
consider opting out.

VII. CONCLUSION

We have considered the issue of users’ voluntary partic-
ipation in mechanisms achieving socially optimal solutions
in IDS games using insurance contracts consisting of pre-
miums and coverage levels, or equivalently, using monetary
taxation/rewards. We argue that with positive externalities, the
incentive to stay out and free-ride on others’ investments can
make users’ participation incentives much harder to satisfy
when designing contracts. We further discuss the implication
of this result and possible remedies.

It remains an interesting question whether there are more
sophisticated forms of the contracts (e.g., with additional
dimensions such as deductibles, maximum coverage, premium
discounts for incident-free users) which might satisfy all
requirements, or whether this is a more fundamental challenge
in designing mechanisms involving positive externalities.

APPENDIX

Proof of Theorem 2

This proof is technically similar to those presented in [19],
[22]. Consider the optimal security investment profile x∗ in

the solution to the centralized problem (2). Our goal is to
show that there indeed exists a Nash equilibrium m∗ of the
mechanism for which x̂(m∗) = x∗.

Let Ci(x) := Lifi(x) + hi(xi) denote the costs associated
with the security investment and expected losses of user i.
We start by showing that given the investment profile x∗, it is
possible to find a vector of personalized prices l∗i , for each i,
such that,

arg min
x�0

Ci(x) + l∗i
Tx = x∗ . (23)

First, note that since x∗ is the optimal solution to (2), it
should satisfy the following KKT conditions, where λi ∈
RN+ , ∀i:

N∑
i=1

(∇Ci(x∗)− λTi ) = 0 ,

λTi x∗ = 0 ∀i . (24)

Choose l∗i = −∇Ci(x∗) + λTi . Then,

l∗i +∇Ci(x∗)− λTi = 0 . (25)

Equations (24) and (25) together are the KKT conditions for
the convex optimization problem:

min
x�0

Ci(x) + l∗i
Tx . (26)

The KKT conditions are necessary and sufficient for finding
the optimal solution to the convex optimization problem (26),
and thus we have found the personalized prices satisfying (23).

We now proceed to finding a Nash equilibrium m∗ resulting
in the socially optimal solution x∗. Consider the message
profiles m∗i = (π∗i ,x

∗
i ), for which x∗i = x∗, and the price

vector proposals π∗i are found from the recursive equations:

π∗i+1 − π∗i+2 = l∗i , ∀i . (27)

Here, l∗i are the personalized prices defined at the beginning of
the proof. The set of equations (27) always has a non-negative
set of solutions π∗i � 0, ∀i. This is because starting with a
large enough π∗1, the remaining π∗i can be determined using:6

π∗i = π∗i−1 − l∗i−2, ∀i ≥ 2 . (28)

Now, first note that by (26), for all choices of x � 0, and
all users i, we have:

Ci(x
∗) + l∗i

Tx∗ ≤ Ci(x) + l∗i
Tx . (29)

Particularly, if we pick x =
xi+

∑
j 6=i x

∗
j

N ,

Ci(x
∗) + l∗i

Tx∗

≤ Ci(
xi +

∑
j 6=i x

∗
j

N
) + l∗i

T xi +
∑
j 6=i x

∗
j

N
. (30)

Also, since by construction x∗i = x∗i+1, ∀i, the inequality is
preserved for any choice of πi � 0, when the two remaining

6In (28), l∗0 is interpreted as l∗N .
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net payment terms from (7) are added in as follows:

Ci(x
∗) + l∗i

Tx∗

+(x∗i − x∗i+1)T diag(π∗i )(x
∗
i − x∗i+1)

−(x∗i+1 − x∗i+2)T diag(π∗i+1)(x∗i+1 − x∗i+2)

≤ Ci(
xi +

∑
j 6=i x

∗
j

N
) + l∗i

T xi +
∑
j 6=i x

∗
j

N
+(xi − x∗i+1)T diag(πi)(xi − x∗i+1)

−(x∗i+1 − x∗i+2)T diag(π∗i+1)(x∗i+1 − x∗i+2). (31)

Equation (31) can be more concisely written as:

ui(g(m∗i ,m
∗
−i)) ≥ ui(g(mi,m

∗
−i)) ,

∀mi = (πi,xi), ∀i . (32)

We conclude that the messages m∗i = (π∗i ,x
∗) constitute an

NE of the proposed mechanism. In other words, the message
exchange process will indeed have an NE which implements
the socially optimal solution of problem (2). �
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